Explicit Spatial Scattering for Load Balancing
In Conservatively Synchronized
Parallel Discrete-Event Simulations

Sunil Thulasidasan Shiva Prasad Kasiviswanathan Stepliemtienz ~ Phillip Romero
Los Alamos National Laboratory
{sunil,kasivisw,eidenben,phi®@Ilanl.gov

Abstract—We re-examine the problem of load balancing problem of unbalanced load is especially egregious in
in conservatively synchronized parallel, discrete-evensim- conservatively synchronized parallel simulation systems
ulations executed on high-performance computing clusters \yhare causality constraints dictate that the simulation

focusing on simulations where computational and messag- lock of W t differ b th
ing load tend to be spatially clustered. Such domains are clock of any two processes not difier by more than a

frequently characterized by the presence of geographic given time factor (called the look-ahead) [6]. Thus, a
“hot-spots” — regions that generate significantly more processor with relatively large event load, whose simula-

simulation events than others. Examples of such domains tion clock advances at a much slower rate, can severely

include simulation of urban regions, transportation net- degrade the performance of the entire simulation
works and networks where interaction between entities is S . L
The load distribution in a parallel simulation is in-

often constrained by physical proximity. o
Noting that in conservatively synchronized parallel sim- herently an outcome of the partitioning strategy used
ulations, the speed of execution of the simulation is de- to assign simulation entities to processors. Most of the

termined by the slowest (i.e most heavily loaded) simula- research into the issue of load balancing and partitioning
tion process, we study different partitioning strategies m in parallel simulations has been approached from the

achieving equitable processor-load distribution in domans fi fd ic load bal . A lgorith
with spatially clustered load. In particular, we study the PErSPECUVE OF dynamic load balancing. An aigorithm

effectiveness of partitioning via spatial scattering to asieve ased on process migration — a challenging task in itself
optimal load balance. In this partitioning technique, neaby — for dynamic load balancing for conservative parallel
entities are explicitly assigned to different processors, simulations is described in [2]. Another dynamic load
thereby scattering the load across the cluster. This iS pajancing algorithm based on spatial partitioning for
motivated by two observations, namely, (i) since load is . . . N . .
spatially clustered, spatial scattering should, intuitiely, a smula‘uqn employing opF|m|§t|c synchronization is
spread the load across the compute cluster, and (ii) in described in [4] and [5], which involves the movement
parallel simulations, equitable distribution of CPU load is of spatial data between neighboring processes. A scheme
a greater determinant of execution speed than messageysing PVM [1] for parallel discrete event simulations is

passing overhead. Through large-scale simulation experi- described in [8]. General partitioning and data decom-
ments — both of abstracted and real simulation models —

we observe that scatter partitioning, even with its greatly position strategies for parallel processing are exploned i

increased messaging overhead, significantly outperforms [3] but the authors do not specifically consider parallel
more conventional spatial partitioning techniques that sek simulation applications.

to reduce messaging overhead. Dynamic load-balancing, in general, presents signifi-
Further, even if hot-spots change over the course of the cant jmplementation challenges in parallel simulations,

simglation, if the ur!derlying feature of spatial clustering is due to the complexity of miarating a simulation obiect
retained, load continues to be balanced with spatial scat- P y 9 9 |

tering leading us to the observation that spatial scatterig 10 @ .diff.erent process. In this paper, we explore St.atiC
can often obviate the need for dynamic load balancing. partitioning strategies for load balancing in parallel sim

ulations, concerning ourselves specifically to problems
where (i) conservatively synchronized parallel simulatio

In parallel computing, achieving an equitable distriis used, and (ii) the problem domains exhibatial
bution of load across available computing resources ¢hustering of load. Such domains are frequently charac-
a significant challenge and often necessitated on hitgrized by the presence of geographic “hot-spots” i.e. re-
performance computing platforms, where idle processag®ns that generate significantly more computational and
represent a huge waste of computational power. Theessaging load than other regions. Examples of such do-

I. INTRODUCTION

mains include simulation of urban regions, transportationll. M ODELING SIMULATION APPLICATIONS WITH
networks, epidemiological and biological networks and SPATIAL LOAD CLUSTERING
generally, networks where interaction between entities is

. . o In this section, we describe an abstracted simulation
often constrained by physical proximity.

model that we use to compare different partitioning
schemes. Our model allows us to capture real world

The main partitioning technique described in thi?‘ .) .
! 4 s eatures like the presence of dense regions with large
paper — spatial scattering, where nearby entities are

explicitly assigned to different processors with the aim o?a.d profiles. We fw_st construct a grapﬂh ~ (.V’ E)_’
WBlch we call thesimulation graph; the vertices in

scattering the Io_ad across the processors — is _motivaEﬁe graph, which are points in a plane lying within a
by wo observations, namely, (i) in many domains, Ioagounding box, are also the load centers that generate

tends to be spatially clustered and spatial scatteri . .
thle computation and messaging load. Messages are sent
should, therefore, spread the load across the compte . .

etween vertices .

cluster, and (ii) in parallel simulations, equitable distr Vert i . We start with a bound
bution of CPU load is often a greater determinant of 3) ex crealion process. Ve start with a bound-

execution speed than message passing overhead. N9 box 5 (a sguare in our case) and discretizs
into 100 equally sized square celfs;, ..., cip0}. The

An analysis of the scatter partitioning technique, bas@c?pmat'on _Of each cell (i.e., the_ number o_f vgrﬂces n
on observations that are similar to the ones thatmotivat?BCh cell) is _generateq agcordlng o a dls_trlbutiDn
this work, was originally presented in [7]. In that mode In-our e_xperlmentSD is _either normal, u_nn‘prm_, or
(based on the authors’ experiences with one-dimensioﬁéponem'al)' We set the mean O.f th_e distribution as
fluid-flow computations and other numerically intensive” OOO (|n_ the case of normal distribution the standard
problem domains), work-loads of nearby regions al eV|at|on. is1/10 of the mean). Let,, ghosen fromD,
exhibit strong correlation, and the conclusions reach & the size of the Ceu:i. (wherel < i < .100)' Then
are similar to ours. The cost of increased communicatiofl e_ach ceII_ci,_we assigns; rando_m vertices that are
(which is very architecture dependent) that result fro istributed within the given cell. Figures 1 and 2 show

a scatter-based decomposition of processor Workloalﬁg spread of the vertices in the bounding box when

were not not part of that model; thus, our work is a vafne distributionD is normal, uniform, and exponential,

idation of the results of [7] on present-day architecturéESpeCt'Vely' . .
with high-speed interconnects. b) Edge creation process: Once the vertices are

created, we create edges @ For our purpose, edges

Through large-scale parallel simulation experimenf§presem channels of communication between vertices

— both of abstracted and real simulation models — di the graph i.e each vertex only communicates with
HPC clusters, we observe that scatter partitioning another vertex with whom it shares an edge. Since one

even with its greatly increased messaging overheadPf the features of networks that exhibit spatial clustering
often significantly outperforms more conventional spatif Short edges, during the edge creation phase, an edge is
partitioning techniques that seek to reduce messagifity’ch more likely to be assigned between vertices that
overhead. Further, even if hot-spots change over tREE Close to each other. Letbe a vertex inG. Let
course of the simulation, if the underlying feature of spa- < @ < 2 be a parameter. Define,
tial clustering is retained, load continues to be balanced -

. ’ . . ! D = d «
which leads us to the observation that spatial scattering) Z (u,)

can often obviate the need for dynamic load balancing.
whered(u, v) is the Euclidean distance betweemandv.

In what follows, we first present a method to generaddfe pick an edgév, ») in the graphG with probability
an abstracted model of a network with spatially clusteret{v, u)~*/D(v). This guarantees that most of the edges
entity and load distribution. Next we present experimenwvithin the graph are small. In our experiments, we set
tal results from distributed simulation experiments on = 2.
the abstract model using different partition strategies, c¢) Computational load generation procedure: We
comparing the performance of scatter partitioning witgenerate a load demand for each vertex in the graph as
other algorithms. Finally we evaluate load-balancinfpllows: for a cell ¢; with s; vertices lying inside it,
and scaling results using scatter on a real applicatitime mean of the load (normally distributed within the
simulator — a scalable, parallel transportation simulateell) is s; and the standard deviation/10. For every
that uses real road networks and realistic traffic pattern@rtex v € V we do the following: ifc; is the cell

ueV

that containw (i.e., the coordinates af lie within the minimizes messaging overhead would assign entities
boundary ofc;), then we pick a random number, that are geographically close to the same processor. A
from a normal distribution with mear; and standard simple geographic partitioning scheme would divide
deviations;/10. The load orw is then proportional to the simulated region into a grid, and assign every
n, (the exact mechanism for generating load is describedentity that falls into a grid cell to the same processor.
in Section V). The right part of Figure 2 shows the Since the network is not uniformly distributed in terms
spatial distribution of computational load when is of node density (as is the case with exponential and
exponentially distributed. normally distributed networks seen earlier), a naive
The load of a vertex dictates the number of cycles geographic partitioning would end up with highly
spent by the processor to whieghhas been assigned. unbalanced load. To mitigate this effect, we perform
Additional computational load might be generated for a geometric sweep assigning equal number of entities
each vertex due to messages it receives (see below). to each grid cell; the resulting partition will consist of
d) Message load generation procedure: The pre- non-uniform rectangular grid cells.
vious three steps are executed in the network creatio(®2) Geographic Partitioning with Balanced Compu-
phase, and are input to the simulation. Message genertational Load: Computational load distribution can
ation occurs during the simulation as follows: initially also be highly uneven in certain networks, especially

each vertexv schedulesm, messages for itselfin, networks with exponential properties. In such case,
being dependent on the load demand for that vertexa geographic partitioning with balanced entities can
generated in the previous step. When a veriexe- result in unbalanced computation load. An alternative

ceives a message it does the following: with probability approach to balancing entity number is to balance the
p, vertexu generates another message and sends thigstimated computational load across processors during
message to one of its neighbors picked randomly from a geographical sweep. While this is fairly easy to do
its neighbor-list, and with probability — p it executesa when one has priori knowledge about load, as is
busy-wait cycle to emulate computational load. We refer the case in our abstracted model, in real applications
to p as themessage forwarding probability, and is an this is often a difficult task. Load profiles can vary
input parameter in our experiments. significantly during the course of the simulation, and
complicated network effects can come into play al-

I1l. PARTITIONING STRATEGIES . . L
))) . tering the estimated load contribution of a network
As noted before, in parallel discrete-event simulation entity.

with conservative synchronization schemes, the differigy geatter Partitioning: Scatter partition exploits the
ence betwgen the S|.mulat|on clocks of any Fwo logical property of spatial clustering of load by explicitly
processes is constrained by the look-ahead time. Thus, @ssigning entities that lie close to each otherdib
simulation process with a relatively high computation ¢oceont processors i.e., entities aseattered across the

load, whose simulation clock progresses at a slower cjyster. Since entities that are close to each other have
rate, slows down the entire system; essentially the speedimijar joad characteristics, by scattering the entities
of simulation execution is determined by the slowest ;e achieves the effect of scattering the load across the
Process. cluster. The obvious drawback to this approach is the

The computational load on a simulation process is yqgitional messaging and synchronization overhead.
determined by the partitioning scheme used to assigNyowever, one of our observations in this paper is

simulation objects to processors. In this section, we that, often, for a large-scale parallel simulations on
explore different strategies for partitioning the simula- high performance clusters with fast interconnects, the
tion workload on a high performance cluster. The ideal computation time dominates message passing over-
partitioning algorithm achieves perfectly balanced com- o4 As we shall see in the following sections, the

putational load while also keeping message overhead to,ygitional overhead from message passing is more
a minimum. For networks with spatially clustered load, {han compensated for by balanced load.

we explore the effectiveness of four different partitianin
algorithms in this paper. IV. DISTRIBUTED SIMULATIONS OF ABSTRACT
(1) Geographic Partitioning with Balanced Entity MODEL
Load: In networks with spatially clustered load, mes- To simulate our abstracted network and load model,
sage trajectories are also spatially constrained. Thuge implemented a parallel, discrete event load simulator.
most of the messages are exchanged between entifies this, we used a generic C++ framework called Sim-
that lie close to each other. A partition algorithm tha€ore that provides application programming interfaces

100k Network - Normal Distribution 100k Network - Uniform Distribution

- 4.5e+06

4e+06

1.05e+06

1.04e+06

[

3.5e+06

- F 1 3e+06
- I 2.5e+06

- - F 1 2e+06
r 1 1.5e+06

- r 1 le+06
- t 1 500000

— 0

1.03e+06

4 1.02e+06

4 1.01e+06

1 le+06

< 990000

< 980000

< 970000

960000

Fig. 1. Left: Heat plot depicting the distribution of the tbaenters (vertices) wheP is the normal distribution. The darker a cell, the more
the vertices it has; vertices within a cell have similar |admhracteristics. Right: Heat plot for uniform distributio

5e+07
! 4.5e+07
Ea

4e+07

100k Network - Exponential Distribution Exponentially Distributed Load

1.6e+07
1.4e+07
1 36407 1.2e+07
le+07
1 2.5e+07 8e+06
6e+06
4e+06

1 15ev07 20406 (7777
- 0
F 1 le+07

1 5e+06

4 3.5e+07

1 2e+07

— 0

Fig. 2. Left: Heat plot depicting the distribution of the tbaenters (vertices) whe® is the exponential distribution. Right: Distribution of
the computational load.

(APIs) and generic data structures for building scalabtvent will cause amessage to be generated only if
distributed-memory discrete-event simulations. SimCothe recipient of the event is on a different processor;
uses PrimeSSF [9] as its underlying simulation engirtbus, the number of messages generated depend on the
which uses conservative synchronization protocols aipértitioning algorithm.
provides APIs for message passing. Obviously, this is a greatly simplified model of a
The load simulator uses SimCore constructs to modsimulation application; 1/0, which is often a major
the abstract network, which primarily consists of nodesottleneck, is not simulated directly. However, the slow-
that are scattered in a given region according to sordewn of a particular simulation process due to I/O can
statistical distribution (described in Section Il). Eaclbe captured through busy-wait cycles.
node is assigned a load profile, which depends on
the node density of the grid cell containing the nod&; g;muLATION EXPERIMENTS ONGENERAL MODEL
The main global inputs to the simulation are:) total
simulation time 7', b) an a priori total event load In this section, we present experimental results for
L, c) the probability parametey, that determines the the load simulator using various partitioning schemes
computational and messaging load, and d) mean numbiescribed in Section Ill. All experiments were carried
of computational cycles” for each computation. Let out on a high performance computation cluster at the
N(V) = > ,cy 7w, Wheren, (defined in Section Il) Los Alamos National Laboratory, comprising of 1290
is the load parameter generated for vertex'he basic compute nodes, with each node consisting of two 64-
algorithm for the load simulator is explained in Figure 3bit AMD Opteron2.6Ghz processors and 8GB memory.
Since p < 1, the total number of events that areThe compute nodes are connected together by a Voltaire
generated in the simulation will die out (as it formgnfiniband high-speed interconnect. For the partitioning
a subcritical branching process) independently of threxperiments described in this section, we limited the
type of partition or even the type of network. Eacltluster size to 64 compute nodes; scaling results on

4

LOAD SIMULATOR ALGORITHM

1) Each vertexw schedulegn,/N(V)) x L events for itself. Note that sum of all eventslis
2) Upon receiving an event, a node
a) With probabilityp, sends an event (message) to a neighboring node, or
b) With probability1 — p, simulates a computational cycle. Computational cyclesimplemented by
simple busy-wait loop; the number of iterations are geoitedty distributed with mearC.

D

Fig. 3. Load Simulator Algorithm

larger cluster sizes for real simulation applications aegrade performance, with ideal ratio beihg
described in Section VI.
We simulated a 100,000 node network for different VI. PERFORMANCE ONREAL APPLICATIONS
spatial distributions — exponential, normal and uniform | ihis section, we present results for the different
— with an average connectivity degree of five. For thga itioning algorithms for a real application simulator.
Input pgrameters (seSe previous section), welset 100, pastTrans [11], [12] is a scalable, parallel transporta-
L =10", andC = 10°. We test scenarios with differentsqn microsimulator for real-world road networks that
messaging overheads by varying the valug & be one 5 simulate and route millions of vehicles signifi-
of 0.1, 0.5, or 0.9. cantly faster than real time. FastTrans combines parallel,
Figure 4 shows the execution time and the numbgfscrete-event simulation (using conservative synchro-
of messages passed in the load simulator under thigation) with a queue-based approach to traffic mod-
various partitioning schemes for the different types afling to accelerate road network simulations. Vehicular
networks, when the messaging probability)i. Even trips and activities are generated using the detailed
in this scenario with the most number of inter procesgnd realistic activity modeling capability of the Urban
messages, scatter outperforms geographical partitionipgpulation Mobility modeling tools that was developed
(with balanced entities) by almost an order of magnitudgs part of the TRANSIMS [10] project at the Los Alamos
despite the message overhead being twice that of tR@tional Laboratory. For the results presented in this
geographical partitioning schemes. section, we simulated a portion of the road network in
For subsequent scenarios (Figures 5) when the méise North East region of the United States, covering
sage passing probability is decreasedi® scatter has most of the urban regions of New York, and parts of
even better relative performance, even though the ab$¢ew Jersey and Connecticut; the network graphs consists
lute execution time increases because of the increassfdapproximately half million nodesl.1 million links
number of busy-wait cycles (computational load). Thand over25 million vehicular trips. A more detailed
results shown here are for the exponential distributelscription of FastTransis given in [11], [12].
network; similar results were observed in the normal and Figure 8 depicts a heat map of the road network
uniformly distributed networks. in the New York region, with areas in red being the
Figures 6 and 7 illustrate the underlying reason for tHausiest points in the network, and areas in blue being
superior performance of scatter in comparison to the geegions with low traffic volume. Spatial clustering of
ographical partitioning schemes. Each 3D bar represefiad is a conspicuous feature of the road network,
the computational load (in terms of busy wait cyclesyith urban downtowns having much higher activity than
on one processor in the 64-processor cluster in tlegher regions; simulated activity decreases significantly
exponential network case, fpr= 0.9 andp = 0.5. Not as one moves away from the core regions. Further,
surprisingly, the worst performing scheme (geographiehicle trajectories, are by nature, spatially constrine
with balanced entities) is also the most unbalanced (tAidus, the overwhelming majority of messages (which are
latter being the cause for the former), while the plotgsed to represent vehicles in FastTrans) are exchanged
for scatter partitioning are more or less flat, indicatingetween neighboring network elements. The spatial load
a well balanced load across the cluster. The Min/Madustering and localized messaging nature of FastTrans
load ratio depicted in these figures is a useful metrimake this a good candidate to test the effectiveness of
for fairness comparison, since the speed of executiongnatter partitioning, in comparison to the other schemes.
a synchronized simulation is determined by the slowestAll partitioning experiments described in this section
process; it follows that a low Min/Max ratio will severelywere conducted on a high performance computing cluster

4500 T T T 600000 T T

Scarer =
Scatter mm—) Random
4000 |- Random 1 Geographic EEEE
Geographic 500000 [Geo-Load I -
3500 |Geo-Load
@
2
g 3000 «» 400000
@ 4
& =3
- I+
o 2500 8
E g 300000
= 2000 3
o]
2 3
3 1500 = 200000
&
1000
100000
500
0 0
Exp Normal Uniform Exp Normal Uniform

Fig. 4. Comparison of the execution time (above) and messpgssed in the exponential network, under different paiiig schemes with
the message forwarding probabiligy= 0.9.

4500 T T T 600000 T T T
Scatter andon —
4000 |- Random 1 ee::rr;::: —
Geographic 500000 [Geo-Load I -
3500 [Geo-Load
@
2
g 3000 «» 400000
o Q
Q j=2
@ I+
o 2500 3
E g 300000
= 2000 3
o]
2 3
3 1500 = 200000
&
1000
100000
500
0 0
Exp Normal Uniform Exp Normal Uniform

Fig. 5. Comparison of the execution time (above) and messpgssed with the message forwarding probabjite 0.5

250412 120412 1es11

Min/J =0,022843 Min/J =0,014679 Min/J =0.656733
el vt £l

1e+13 2en12 1e+13 ez

156412

le+13
se+11

6es11 1e+12
411
26011 le+ll

le+12 le+12 b

1es12

le+ll sertt le+ll
o

le+10 le+10

=

1

Fig. 6. Computational load (busy-wait) distribution ac@socessors in the load simulator in a 64 CPU run under diffgpartitioning schemes
with p = 0.9. The first two are for the geographic partitioning with baleth entities and balanced computational load, while on itjie is
scatter partitioning. The underlying distributidn is exponential.

078297 5ess? Min/Max = 0,047244 etz oo
ez i §§‘e+%
fr e = T.816+

=0,846479

1e+12
ses11
Gerll
et
20011

o L9e+11

Fig. 7. Computational load (busy-wait) distribution acrgeocessors in the load simulator in a 64 CPU run for balarectity, balanced
computational loada nd scatter with= 0.5. The underlying distributiorD is exponential.

.

Fig. 9. Figure illustrating assignment Fig 10. A zoomed in figure illustrating as-
of entities under geographic partitioning signment of entities under scatter partition-
scheme with balanced entities. All entities jng scheme. Nearby entities are assigned
in one colored box are assigned to the same gjfferent colors (processors)

processor.

Fig. 8. Figure illustrating distribution of
event load in the New York region.

3.5e+09

2000 Scatter —li—
i

Scatter —li— Geographic with Balanced Entity Distribution 0.9985
Geographic with Balanced Entity Distribution 3e+09 Geographic - | P
Geographic - Geographic with Balanced Routing Load i
Geographic with Balanced Routing Load i Geographic with Balanced Event Load 0.1551
. Geographic with Balanced Even Load il 250409 : 0.0995

1500

o

2e+09] = w)

1000 15e+09

Total Messages Passed
Fairness (Min/Max)
°
2

°
=
3

1e+09 0.00026

500 ——
50408 0.0001 +— | —zc8e05
B
m B n
0 32 64 128 256 512 0.00001

Sater | Geographic Balanced Entte A Event Balanced Routng
2 64 128 256 512 Number of CPUs rone
Number of CPUS

Fig. 11. Comparison of execution times of
FastTrans (as a function of #CPUs) under
different partitioning schemes.

Execution Time (Minutes)

Fig. 12. Comparison of the number of

messages passed in FastTrans (as a func- Fig. 13. Comparison of fairness of com-
tion of #CPUs) under different partitioning putation load in FastTrans under different
schemes. partitioning schemes.

at Los Alamos National Laboratory for different proceseessor load for a given experiment (with the ideal ratio
sor configurations, ranging fro2 to 512 processors. being 1) is a useful metric, since the speed of execution
Figure 11 illustrates the basic performance of the variotisne in a synchronized simulation is determined by the
partitioning schemes in terms of execution speed. Geslowest process. Figure 13 compares this ratio for the
graphic partitioning with balanced entities performs thearious partitioning schemes; note how these correlate
worst, while scatter partitioning is the fastest, outpewith speed of execution.
forming geographic partitioning with balanced entities
by about an order of magnitude. Interestingly, perfo™ A Note on Dynamic Load Balancing
mance in terms of message-passing overhead is almospchieving an equitable distribution of load across a
the reverse of execution time — the number of integluster is a significant challenge as well as a necessity
process messages being passed in scatter partitioningots computationally intensive tasks, especially in high
an order of magnitude higher than geographic. performance clusters where idle processors represent a
The fairness of load distribution is shown in Fig-huge waste of computational power. A partition algo-
ures 14 through 16. These figures illustrate the comithm can exploit knowledge of the problem domain, and
putational load on each processor in &g processor assigna priori load profiles to entities in the network,
set-up, with load being defined as a weighted sum bfit as we have seen, these do not always translate into a
event and routing load. Each bar represents the load lbalanced run-time load distribution. Further, complidate
one CPU over the entire simulation. The best-performimgetwork effects and highly dynamic scenarios can result
partitioning scheme (scatter) clearly outperforms thie significant geographical migrations of load. For ex-
other schemes. The fairness of the partitioning schemasyple, in the case of a transportation network, the event
calculated as the ratio of the minimum to maximum praand routing load profile may differ significantly in a

Min/Max = 0.9985 3.2e+07
W =252e+07 3e+07 Min/Max = 0.00026 1e+08
le+08 0 = 1.86e+06

2.8e+07 16408 = 1= 2.49e+0
2.6e+07 =3.55¢+0
2.4e+07 8e+07 .
2.2e+07
2e+07

5e+07
6e+07
4e+07
2e+07

Fig. 14. Computational load distribution of
FastTrans in @56 CPU run under scatter
partitioning. Each bar represents the load
on one CPU.

Fig. 15. Computational load distribution
in FastTrans in 256 CPU run under geo-

graphic partitioning with balanced entities.

Min/Max = 0.0995 6e+07
= 2.526+07
1e+08 G=7.7e+06

4e+07

2e+07

Fig. 16. Computational load distribution
in FastTrans in 256 CPU run under geo-
graphic partitioning with balanced load.

simulation of a disaster scenario than from the simulatiof] Richard M. Fujimoto. Parallel discrete event simulaticCom-
of a normal day. However if the load patterns continue tg_ mun. ACM, 33(10):30-53, 1990. _

hibi ial cl . is of h it islVai [7] D. Nicol and J. Saltz. An analysis of scatter decompositl EEE
exhibit spatial clustering (asis often the case), it) yair Transactions on Computers, 39(11), 1990.
intuitive to see that scatter partitioning would continae t [8] A.N. Pears and N. Thong. A dynamic load balancing archite

achieve a balanced load profile, thus largely obviating the for PDES using PVM on clustersRecent Advances in Parallel
Virtual Machine and Message Passing Interface, pages 166-173,

need for dynamic load balancing. Generally, for problem 551

domains that exhibit spatial clustering of load, scattef9] PRIME. Paralle Real-time Immersive network Modeling Envi-

partitioning is a simple and highly effective approach. _ ronment. Available at http://prime.mines.edu/. .
[10] L Smith, R Beckman, D Anson, K Nagel, and M E Williams.
VIl. CONCLUSION Transims: Transportation analysis and simulation systein.

) . . Proceedings of the Fifth National Conference on Transportation
In this paper we presented a partitioning technique Planning Methods, Seattle, Washington, 1995.

for achieving balanced computational load in distributel@l] S. Thulasidasan and S. Eidenbenz. = Accelerating traffie

simulations of networks that exhibit spatial load clus-

crosimulations: A parallel discrete-event queue-baseurageh
] ' - ¢ for speed and scale. IRroceedings of the Winter Smulation
tering. Such domains include transportation networks, Conference, 2009.

epidemiological networks and Other networks Wher{éZ] S. Thulasidasan, S. Kasiviswanathan, S. EidenbenzGdli,

geographical proximity constrains interaction between

S. Mniszewski, and P. Romero. Designing systems for large-
scale, discrete-event simulations: Experiences with dsétriins

entities, often leading to geographical hotspots. Through parallel microsimulator. IrHiPC, 2009.

simplified models and a real application, we demon-
strated the effectiveness of explicit spatial scatteriog f
achieving near optimal load balance, and vastly improved
execution times — even at the cost of increased messaging
overhead — compared to more traditional topological par-
titioning schemes. Directions for future research include
validating the effectiveness of scatter partitioning for
different types of simulation applications.

REFERENCES

[1] A.B. Al Geist, J. Dongarra, W. Jiang, R. Manchek, and VnSu
deram. PVM: Parallel virtual machine: a users guide and
tutorial for networked parallel computing. 1994.

[2] A. Boukerche and S.K. Das. Dynamic load balancing sgiate
for conservative parallel simulationsACM S GSM Smulation
Digest, 27(1):20-28, 1997.

[3] Phyllis E. Crandall and Michael J. Quinn. A partitioniagvisory
system for networked data-parallel processing.Cbmcurrency:
Practice and Experience, pages 479-495, 1995.

[4] E. Deelman and B.K. Szymanski. Simulating spatially lexp
problems on high performance architecturéBDC, 62(3):446—
467, 2002.

[5] Ewa Deelman and Boleslaw K. Szymanski. Dynamic load bal-
ancing in parallel discrete event simulation for spatiakplicit
problems. InWorkshop on Parallel and Distributed Smulation,
pages 46-53, 1998.

